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Project summary: Climate change is expected to alter global temperature and precipi-
tation patterns in multiple ways, including increases in mean temperatures, more variable
precipitation patterns and extreme events, and more autocorrelated climate across space
and time. These multiple dimensions of shifting climate are already exhibiting large im-
pacts on our ecosystems, and are predicted to continue affecting population and community
dynamics, with implications for species extinction risk and food security. However, how
climate variability will impact population and community dynamics depends on ecological
sensitivity to climate drivers and species’ abilities to buffer dynamics during adverse condi-
tions. Our group will integrate climate and multiple ecological data sources to link climatic
variability with population and community variability across the US, providing insight into
potential ecological impacts under future climate change scenarios. In doing so, we aim to
additionally provide a synthetic understanding of variability as a measure, bridging stan-
dard measures with more complex metrics that consider temporal autocorrelation (i.e., noise
color), nonequilibrium conditions (i.e. comparing stochastic distributions through time), and
spatiotemporal patterns (spatial synchrony). This will highlight the multiple dimensions of
potential climate change impacts, using consistent spatiotemporal metrics that link from
climate to ecological impacts.

Public summary: Environmental conditions play a key role in shaping ecological pat-
terns, from species diversity to the variability in species abundances through time. As such,
it stands to reason that climate-change driven impacts to temperature and precipitation pat-
terns will fundamentally alter our ecosystems. However, species have developed a multitude
of mechanisms that help them cope with environmental variability. As such, how current
and future climate change will impact ecological variability remains an open question, critical
for predicting species extinction risk, biomass production, and ecosystem stability. A highly
interdisciplinary and diverse team with expertise in ecology, modeling, computer science,
and climate science will tackle these questions through synthesis of big data across climates
and taxa, ranging from fish to beetles to small mammals.

Introduction and goals:
How does environmental variability influence population dynamics? More vari-
able environments should lead to more variable ecological dynamics [21, 20]. While this may
seem intuitive, it is an oversimplification that often is not detected in data. For instance,
species and communities may differ in their susceptibility to environmental conditions (i.e.,
their “response diversity”), rates of response to change, and ability to buffer during adverse
times, all of which may mask the relationship between climate and ecological variability
(Fig. 1A, B). Further, variability can be defined in a multitude of ways, depending on the
underlying questions and data structure [6]. This includes considering the data distribution
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and standardizing the variance by the mean (i.e., the coefficient of variation), considering
the actual structure of the time series (i.e., noise color [11] and time series decomposition
[13, 1]). Finally, scaling across populations of the same species, or from the population
to the community scale, requires that we consider synchrony or correlated fluctuations in
environmental conditions or species abundances [15] (Fig. 1).
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Figure 1: Climate variability (A) is expected to alter ecological
variability (B), though its effect is often masked due to the com-
plexity of ecological systems. By exploring the multiple dimen-
sions of variability (C) we can better understand how current and
future climate variability will impact population dynamics.

Variability in a chang-
ing climate Over time,
environmental conditions
have changed in their
mean, become more tem-
porally autocorrelated [5],
and increased in their
variability, leading to more
extreme events [10]. These
offer potentially conflict-
ing forces on resulting
population dynamics, as
more temporally autocor-
related environments can
stabilize population dy-
namics [16, 7], while more
variable environments are
expected to destabilize
population dynamics [8].

By exploring the multiple dimensions of climate and ecological variability, our interdisci-
plinary working group aims to synthesize across big data from atmospheric and ecological
systems to address the complex relationship between climatic drivers and fluctuating pop-
ulations across a breadth of geographic and taxonomic scales.

Aim 1: What is the spatial distribution of environmental variability? Us-
ing large-scale spatio-temporal environmental data from NASA, we will estimate different
types of temporal variability across environmental axes (e.g., temperature, precipitation).
Some sites might have increased climatic temporal variability along a rolling window when
estimated as the coefficient of variation, but have decreased (or no change) in the tempo-
ral autocorrelation of climatic conditions (i.e., noise color). By disambiguating the different
types of climatic variability, we aim to expose differences in environmental structuring across
geographic space and habitat types (e.g., biomes) and how these measures are changing over
time. Finally, our rolling window approach will enable the ability to forecast temporal
variability into the future under different climate projection scenarios. Given the role of en-
vironmental variability for species’ persistence, food safety, understanding how ow temporal
variability in climatic conditions are changing across space and biomes represents a clear and
pressing need.
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Aim 2: Is temporal variability in population dynamics related to environmental
variability? Uncovering geographic and temporal patterns of population and community
fluctuations is critical for conservation and management of our ecosystems [4]. We aim to
map temporal variability in climate to the observed variability in population and community
abundances across multiple biomes and taxa using a suite of metrics (Fig. 1). For example,
a seeming lack of response under common metrics, such as the coefficient of variation [19],
may mask timescale specific responses in synchrony [15, 25] or changes in the autocorrelation
structure of species’ variability [12].

Aim 3: How do we quantify variability? While we have multiple metrics of vari-
ability, that range in complexity and disciplinary use, our final metrics of variability will be
informed by the expertise of our working group and the iterative process as we apply each
to climate and ecological data. Based on what we learn from this process, we aim to publish
a synthesis manuscript paired with contributions to existing open-source R projects (e.g.,
synchrony or codyn packages).
Proposed activities:
Data
National Ecological Observatory Network: The NEON data will serve an essential

role for exploring temporal variability in population and community dynamics across a di-
versity of ecological systems, and linking these to climatic variability. These data consist of
species abundance and community composition across taxons and at a set of sites distributed
across the United States sampled for an extended period of time (Table 1). These data are
ideally-suited for explorations of temporal variability, as they consist of site-level repeated
surveys of many different taxonomic groups with methodological approaches standardized
across geographically widespread sites (Table 1). Many of the working group members have
expertise in working with the NEON data [3, 17, 18, 2, 24], suggesting that data wrangling
will be feasible fairly quickly.
Table 1: NEON data sources, species, and density ranges (ranges
of individuals per sampling area) available.

Taxa Sites Species Density range
Fish 27 94 1-116

Ground beetles 19 315 1-80
Macroinvertebrates 34 378 1-7839

Small mammals 46 120 1-69
Ticks 46 13 1-629

Zooplankton 7 80 0.002 - 6785.7

High-resolution climate
data: We will use NASA
Earth Exchange climatic
data layers to assess tem-
poral variability in cli-
matic data. Data from
these layers are provided
as daily temperature min-
imum and maximums, as
well as daily precipitation

data [9]. Spatial resolution of many of the data products is 0.25 degrees or less ( 25km x
25km grid cells). IPCC climatic projections from multiple climatic scenarios derived from
the general circulation model allow for the potential to explore future climatic conditions,
enabling forecasts of climatic variability as well as highlighting areas where the link between
species variability and climatic variability may become more pronounced. All model outputs
are under the umbrella of NASA’s NEX-GDDP data, allowing flexible comparisons of dif-
ferent climatic projection models and different representative concentration pathway (RCP)
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scenarios for future greenhouse gas emissions.

Data harmonization: Climatic data is at a much higher resolution than the NEON data
in terms of spatial and temporal grain. We will sample climatic layers as appropriate for
the questions of the working group. That is, to link climatic variability to population and
community variability, we will use the representative timescale that the NEON data were
sampled – which can range from sampling performed every two weeks to only a few times
per year depending on taxonomic group – and representative spatial scale. Standardized
sampling of NEON sites allows us to explore the relevant spatial resolution, though even
the more vagile taxa in the NEON data will occupy a small number of grid cells in climatic
space. A strength of leveraging both of these data resources is that some questions may only
rely on one data resource, allowing us to both fully exploit the spatial and temporal scale of
the climatic data using high performance computing (HPC) methods while simultaneously
integrating climate and ecological data using parallel processing on the cluster to explore
dimensions of variability.

Advancing DEI: The assembled working group includes participants from highly diverse
backgrounds, with expertise in ecology, coupled human-environmental systems, computer
science, complex science, and mathematics. We span career stages, including four graduate
researchers, a postdoctoral researcher, and a mix of assistant, associate, and full professors.
The proposed project is led by two assistant professors, thus supporting early-career de-
velopment. Further, our group has a balanced gender ratio, with 8 out of 15 participants
identifying as female scientists. We have confirmed participants from the U.S., China, and
Canada, and from varied underrepresented backgrounds, including gender identity and dis-
ability status. Further, we believe that the working group’s strong open science approach,
outreach activities, and R package contributions will be inclusive to a variety of researchers.
Public-facing output from the working group will be available throughout project develop-
ment, and our products and methods will be usable by environmental data scientists broadly.

Rationale for ESIIL support: The proposed working group leverages the strengths of
ESIIL in support of the four-pronged mission of ESIIL. We aim to do transformative science
through the integration of fine-scale climatic big data and cross-system, standardized biotic
community sampling, leveraging CyVerse and other computational tools for collaborative
data-driven science, developing analytical workflows collaboratively with an emphasis on
FAIR data practices and open science, and publishing high-impact scientific manuscripts
alongside of documented and versioned code and data products.

Several of the proposed working group members were previously members of a highly-
productive National Ecological Synthesis Center (NCEAS) working group centered on syn-
chrony of ecological systems, demonstrating their capability to produce high-quality science
as part of a team as well as their expertise in the proposed research area [14, 15, 23, 22].
The addition of participants from UC Boulder, in addition to the inclusion of early career
scientists (graduate students and postdoctoral researchers), will allow this team to do high-
impact science while also expanding collaborative networks of early career researchers and
providing an example of effective team-based science.
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Collaborations with other ESIIL activities: Several of the working group participants
have previously attended ESIIL events, including the 2023 ESIIL Summit (Dallas and Mel-
bourne). A funded working group would not only bring our team to CU Boulder to interact
with researchers from the broader ESIIL community, but would encourage team members
to participate in ESIIL-sponsored events such as the virtual Hackathon activities and future
summit meetings. Many team members have experience with hackathon style events (e.g.,
Dallas ran numerous funded hackathons at Louisiana State University). If appropriate, we
would be excited to interface with the ESIIL STARS program, such as by hosting a data
science workshop or having a students’ internship experience be in collaboration with with
working group.

Anticipated IT needs: Handling large spatial data and coordinating collaborative coding
will necessitate the use of CyVerse. We will lean heavily on compute clusters and the ability
to parallelize analyses, given the scale of analyses and data. The shared focus of CyVerse and
many of the working group participants’ previous experience with cluster computing, open
science, and version-controlled data/analysis suggests that the activation energy required
will be fairly minimal. Further, the multiple participants who attended the ESIIL 2023
summit received initial training on CyVerse and JupyterHub. All code and data generated
from this project will be versioned and openly available, including this grant proposal. We
do not require long-term maintenance of a public database given all datasets are maintained
on open access platforms, and our curated data will be published alongside each manuscript.

Proposed timetable: We will plan to meet in Boulder, Colorado in May or June of 2025
and 2026 for 4 days each meeting, and virtually in early 2026 to wrap up existing projects and
plan for future directions of the group (e.g., gauge interest in applying for an NSF research
coordination network or other funding). The first meeting will focus on identifying key
tractable questions and organizing small core-teams that will lead each aim of the project.
The second meeting will focus on analyses and collaborative writing of manuscripts drafts.
Between each meeting, we will foster asynchronous collaboration – enhanced through the
creation of a GitHub organization – and regular small group meetings. We will additionally
hold a half day virtual meeting fall and spring semester to ensure full group collaboration
and maintain momentum towards project milestones between meetings.

Outcomes: We expect that this working group will result in a minimum of three peer-
reviewed publications—one per aim—although anticipate that multiple additional publi-
cations will result from Aim 2 that dive into specific cascading effects of environmental
variability. Additionally, in year 3 of the working group, we will organize a Symposium at
the Ecological Society of America’s Annual Meeting, allowing us to disseminate our results
broadly and network with ecologists and environmental scientists in similar fields.

We additionally expect that the working group will promote further collaborations which
will result in submission of NSF grants, targeting opportunities such as the Macrosystems and
NEON-enabled Science call (NSF 22-504) or the Emerging Mathematics in Biology program
(NSF 23-537) through both standard grants and research coordination networks (RCNs).
The standard grant pathway would be used to support collaborative research stemming
from work initiated during the working group, while the RCN pathway would be useful to
further support (post)graduate scholars through a formalized working group structure.
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